Ela Commuting

نویسنده

  • YONGHO HAN
چکیده

The variety C(3, n) of commuting triples of n × n matrices over C is shown to be irreducible for n = 7. It had been proved that C(3, n) is reducible for n ≥ 30, but irreducible for n ≤ 6. Guralnick and Omladič have conjectured that it is reducible for n > 7.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela on Maximal Distances in a Commuting Graph

It is shown that matrices over algebraically closed fields that are farthest apart in the commuting graph must be non-derogatory. Rank-one matrices and diagonalizable matrices are also characterized in terms of the commuting graph.

متن کامل

Ela Polynomial Inequalities for Non-commuting Operators

We prove an inequality for polynomials applied in a symmetric way to non-commuting operators.

متن کامل

Ela on C−commuting Graph of Matrix Algebra∗

Let D be a division ring, n 2 a natural number, and C ⊆ Mn(D). Two matrices A and B are called C−commuting if there is C ∈ C that AB−BA = C. In this paper the C−commuting graph of Mn(D) is defined and denoted by ΓC(Mn(D)). Conditions are given that guarantee that the C−commuting graph is connected.

متن کامل

Ela Norm Estimates for Functions of Two Non-commuting Matrices

A class of matrix valued analytic functions of two non-commuting matrices is considered. A sharp norm estimate is established. Applications to matrix and differential equations are also discussed.

متن کامل

Ela Norm Estimates for Functions of Two Commuting

Matrix valued analytic functions of two commuting matrices are considered. A precise norm estimate is established. As a particular case, the matrix valued functions of two matrices on tensor products of Euclidean spaces are explored.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005